24=72t^2-16t

Simple and best practice solution for 24=72t^2-16t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24=72t^2-16t equation:


Simplifying
24 = 72t2 + -16t

Reorder the terms:
24 = -16t + 72t2

Solving
24 = -16t + 72t2

Solving for variable 't'.

Reorder the terms:
24 + 16t + -72t2 = -16t + 16t + 72t2 + -72t2

Combine like terms: -16t + 16t = 0
24 + 16t + -72t2 = 0 + 72t2 + -72t2
24 + 16t + -72t2 = 72t2 + -72t2

Combine like terms: 72t2 + -72t2 = 0
24 + 16t + -72t2 = 0

Factor out the Greatest Common Factor (GCF), '8'.
8(3 + 2t + -9t2) = 0

Ignore the factor 8.

Subproblem 1

Set the factor '(3 + 2t + -9t2)' equal to zero and attempt to solve: Simplifying 3 + 2t + -9t2 = 0 Solving 3 + 2t + -9t2 = 0 Begin completing the square. Divide all terms by -9 the coefficient of the squared term: Divide each side by '-9'. -0.3333333333 + -0.2222222222t + t2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + -0.2222222222t + 0.3333333333 + t2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + -0.2222222222t + t2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + -0.2222222222t + t2 = 0 + 0.3333333333 -0.2222222222t + t2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 -0.2222222222t + t2 = 0.3333333333 The t term is -0.2222222222t. Take half its coefficient (-0.1111111111). Square it (0.01234567901) and add it to both sides. Add '0.01234567901' to each side of the equation. -0.2222222222t + 0.01234567901 + t2 = 0.3333333333 + 0.01234567901 Reorder the terms: 0.01234567901 + -0.2222222222t + t2 = 0.3333333333 + 0.01234567901 Combine like terms: 0.3333333333 + 0.01234567901 = 0.34567901231 0.01234567901 + -0.2222222222t + t2 = 0.34567901231 Factor a perfect square on the left side: (t + -0.1111111111)(t + -0.1111111111) = 0.34567901231 Calculate the square root of the right side: 0.587944736 Break this problem into two subproblems by setting (t + -0.1111111111) equal to 0.587944736 and -0.587944736.

Subproblem 1

t + -0.1111111111 = 0.587944736 Simplifying t + -0.1111111111 = 0.587944736 Reorder the terms: -0.1111111111 + t = 0.587944736 Solving -0.1111111111 + t = 0.587944736 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '0.1111111111' to each side of the equation. -0.1111111111 + 0.1111111111 + t = 0.587944736 + 0.1111111111 Combine like terms: -0.1111111111 + 0.1111111111 = 0.0000000000 0.0000000000 + t = 0.587944736 + 0.1111111111 t = 0.587944736 + 0.1111111111 Combine like terms: 0.587944736 + 0.1111111111 = 0.6990558471 t = 0.6990558471 Simplifying t = 0.6990558471

Subproblem 2

t + -0.1111111111 = -0.587944736 Simplifying t + -0.1111111111 = -0.587944736 Reorder the terms: -0.1111111111 + t = -0.587944736 Solving -0.1111111111 + t = -0.587944736 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '0.1111111111' to each side of the equation. -0.1111111111 + 0.1111111111 + t = -0.587944736 + 0.1111111111 Combine like terms: -0.1111111111 + 0.1111111111 = 0.0000000000 0.0000000000 + t = -0.587944736 + 0.1111111111 t = -0.587944736 + 0.1111111111 Combine like terms: -0.587944736 + 0.1111111111 = -0.4768336249 t = -0.4768336249 Simplifying t = -0.4768336249

Solution

The solution to the problem is based on the solutions from the subproblems. t = {0.6990558471, -0.4768336249}

Solution

t = {0.6990558471, -0.4768336249}

See similar equations:

| 35*a=105 | | 2-4z=13 | | 2.25r=10 | | 1x-13=2 | | int((-2xy^2)-3y)dx+((-2x^2)y-3x)dy=0 | | K(x)=2-10x-100 | | x=0.5x+0.2x+250+(10+50) | | 9+10y=5 | | 3x+3+5x=59 | | (X+12)6-90= | | g(x)=3x^2+2x+13 | | -2q+2(p+1)(1-q)+2(q-p)=(1-q)(p+2)-p(q-1)+15 | | 6+17x=-15+-14x | | 2(p+1)(1-q)+2(q-p)=(1-q)(p+2)-p(q-1)+15 | | 2(p+1)(1-q)+2(q-p)=(1-q)(p+2) | | 10nm=40 | | 8x+72=8+8x | | n+7.1=8.6 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+11pq-p^2+q | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+10pq-p^2 | | ((-2xy^2)-3y)dx+((-2x^2)y-3x)dy=0 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+10pq+p^2 | | 13x-8=-31 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)+pq | | 8xln(x)+x=0 | | 4x-2(x-3)=-7+5x-2 | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1)-9pq | | (p+1)(q+1)-3p(1-q)+2p(1+3q)=(p-q)(p+1) | | 4m-2=-16-3 | | 9tan^2(3x)=27 | | -9y+7=24y-2 | | k(1-k)-k(1+k)+(2k+1)-(1-2k)=11k+5 |

Equations solver categories